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Boundary dynamics and multiple reflection expansion for Robin boundary conditions
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In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a
function S of the boundary fields:Yy+ S) ¢»=0. Information on quantum boundary dynamics is then encoded
in the S-dependent part of the effective action. In the present paper we extend the multiple reflection expansion
method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective
action (i) for constants, (i) to the orderS? with an arbitrary number of tangential derivatives. Some applica-
tions to symmetry breaking effects, tachyon condensation and a brane world are briefly discussed.
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I. INTRODUCTION whereVy is covariant derivative with respect to the inward
pointing unit normalD is a second order partial differential
Recent years have seen a considerable increase of the iBperator which depends QE S=— %T/"(g); the prime de-
terest in the relations between bulk and boundary dynamicsotes differentiation with respect . Boundary conditions
One of the most exciting applications of the subject is thefor the fluctuationsy follow from the requirement that the

tachyon condensation in open string theory. Modern interesoundary part of the actiof2) vanishes. These can be either
in this mechanism of symmetry breaking is connected withpjrichlet ¢|,,,=0 or Robin

the papers by Sen and Zwiebafh], though certain ideas
were developed much earliésee, e.g.[2]). Now, many dif- (WW+9Sel,m=0 3
ferent methods are being used in this field. An extensive
literature survey can be found [8]. The sigma model ap- boundary conditions. Both sets of boundary conditions en-
proach[4] is probably the closest one to the technique of thesure also the Hermiticity of the operatdr. In the present
present paper. The tachyon field enters the boundary term @aper we will consider Robin boundary conditions only. We
the open string action, and, therefore, modifies the opeiill be interested in the dependence on the functwf the
string boundary conditions. heat kernel coefficients, the trace of the heat kernel, and the
In the present paper we deal with a scalar theory on &ne-loop effective action.
manifold M, dimM=m. Let the classical action be of the ~ The brane-world scenar[6] usually assumes that there is
form an interaction of the bulk fields which is confined on a sur-
face Y. Many essential features of such interactions can be
described by the actiofil) where in the second term one
integrates over the surfag One-loop quantum corrections
are then given by the determinant of the oper&csubject

with two so far arbitrary potentia andV. If M is an open o the following matching conditions oB,
string world surface, and i is the string coordinatex*,

S(¢)= fMdmx[<V¢>2+V(¢>]+ LMdmfle/(gﬁ), (1)

then the boundary potentidl may be identified with the P
boundary tachyonV(¢):=T(X). 1.
Let us splite into its background pam and the quantum — (W) + +(We) -+ 5V($)¢=0, 4
fluctuationse: ¢=$+ ¢. To calculate the one-loop effective ) o
action we have to keep the part&fwhich is quadratic inp; ~ Where the subscripts " and “ —" denote limiting values

on X from the two sides of the surface. It has been demon-
strated in[6,7] that if the background fields are symmetric
under the reflection abou, the V-dependent part of the
heat kerneland, consequently, that of the effective acjian
indeed described by the Robin boundary value probi@m

Sz=f de¢D¢+f d" xe(-W—Se, (2
M IM
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of this paper is to develop a technique, we will not go too far In Appendix A we show that our results for the trace of
in the applicationgand will not give a more detailed litera- the heat kernel can be extended to curved boundaries. Ap-
ture survey. We reserve these subjects for future publica-pendix B contains some details on the treatment of possible
tions. Robin boundary conditions have also been consideregkegative eigenvalues. Explicit expressions for the boundary
recently in the context of AdS conformal field thedi@FT) part of the Coleman-Weinberg potential for massive fields
[8]. are given in Appendix C.

The heat kernel technique is by now a standard tool of
qguantum field theory. It allows to extract divergences and
anomalies in a very efficient way, and to represent the one Il. HEAT KERNEL
loop effective action in a nice geometric form. More details
on related mathematics and physical applications may be
found in the book$9]. Moreover, a knowledge of the effec- In this paper we are interested in the dependence of the
tive potential allows one to study symmetry breaking effectsheat kernel and the effective action on boundary values of
with the formation of a(boundary condensate. The imagi- the background fiel@, through the functior§in the bound-
nary part of the quantum potential tells us about vacuumary conditions(3). We perform actual calculations for a
instability, while the derivative part of the effective action is simple flat geometry. Our results must then be understood as
related to the momentum dependence of certain diagrams.an approximation to more generic situations.

In previous paper$6,10], we showed that the multiple  Let M be a flat, m-dimensional half space, and(¢)
reflection expansiofll] is a powerful tool for studying the =0 in Eq. (1) (thenD is free scalar LaplacianThe heat

asymptotics of the heat kernel, and applied it to some claskernelK (x,y;t) is defined as a solution of the heat equation
sical boundary problems, as well as singular potentials for

second order operators on compact manifolds with spherical
symmetry. (d;+DyK(x,y;t)=0 (5)

In the present paper, we apply the same technique to sec-
ond order differential operators on flatdimensional mani-
folds, acting on functions that satisfy, at the With the initial condition K(x,y;0)=d(x—y) inside the
(m—1)-dimensional boundary, the conditions in Eg). manifold. It must be supplemented wifRobin boundary

In Sec. Il A, the general form of the smeared boundaryconditions when its first argument belongs to the boundary.
heat kernel coefficients is obtained. In the particular case of a The heat kernel for Robin boundary conditions satisfies
constant fieldS, and after taking the smearing function to the Dyson equation
unity, the resulting series is shown to be summable, and the
complete boundary contribution to the trace of the heat ker-
nel is then obtained for any dimensiomin Sec. Il B.

Section Il C contains the multiple reflection expansion K(Y:t)=Ky(xy;t)
study of the boundary contribution to the trace of the heat t
kernel in the case of a fiel& depending on the boundary +f dsf dzKy(x,z;8)S(z)K(z,y;t—s),
coordinates. In this situation, each order in the multiple re- 0 M
flection expansion is shown to give, not only the asymptotic (6)
contributions, but also the non-asymptotic ones.

Using these results, the boundary one-loop effective La-
grangian is evaluated for constaé®iin Sec. Il A. The bound- whereKy is the heat kernel for Neumann boundary condi-
ary one-loop effective kinetic energy for a gene8k) is  tions (S=0). It admits a solution in terms of a power series
studied in Sec. Il B. inS

A. Multiple reflection expansion

“ ot Sh S,
Koy =kn0eyin+ 3 [ as,[Tds oy [ Tds [ aa
n=1 0 0 0 M

X fﬂMleXKN(XaZn;t_sn)s(zn)KN(znaZn—l;Sn_Sn—l) s -S(Zl)KN(Zluy;Sl)a (7)

which is nothing but a multiple reflection representation forand(7) is to consider the boundary interaction tefgy ¢ Se

the heat kernel. It is, of course, equivalent to the multipleas a perturbation to the Neumann problem, represent the heat

reflection representation for the propagdtbt]. kernel asK(x,y;t)=[x|exp(—t(D+Sé,u))|y] and expand
Avery simple(and also very naivevay to derive Eqs(6)  the exponential in a power series 8f This derivation ig-
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nores completely all existence and convergence requirdng just the integrated heat kerndl= 1) is insufficient for
ments, but reproduces correctly the combinatorics of the exmany physical applications where one needs local quantities
pansion. Similar arguments fail for other types of (as, e.g., the trace anomaljHowever, it can safely be taken
perturbations. Equatiof¥) can be also derived from the cor- equal to one when studying global quantities, such as the
responding equation irf6] using equivalence to semi- integrated heat kernel coefficients or the integrafefinc-
transparent boundaries. Note that, after suitable modification. This will be the case for the applications to be consid-
tions in the multiple reflection expansio8may be replaced ered in this paper.
by a general differential operatpt?2]. SupposeM is a manifold of product type so that, near the

The representatiofv) was used in the context of singular boundary, it can be decomposed aMx[0,5]. Let X
potentials in[6] to prove some general properties of the heat=(z,r), wherez is a coordinate on the boundary, ani a
kernel and also if13] to calculate the heat trace asymptot- normal coordinate. The smearing functibcan be expanded
icS. in a Taylor series im:

Consider the smeared heat kernel

[

P
f(zr)=2 —fP(z), 9
K(f,t)=f d™x f(X)K(x,X;t). (8) p=0 P:
M
wheref(P)(z) denotes the boundary value of the¢h normal
This is a mathematically consistent way to deal with thederivative. By substituting Eqg7) and (9) in Eq. (8) and
distributional nature of the heat kernel diagoh&onsider- integrating over we obtain

S 2P [1+ t Sn s
K(f.Hh=2> >, f dzfP(z)—T P J dsqf ds,_; ... J “ds,
n=0 p=0 Jam p! 2 0 0 0
(t_Sn)Sl (1+p)/2
X\ dz, ... J dz1KN(Z,Z, 51— 80) S(Z0) Kn(Zn 1 Zn—13Sn— Sn—1) - - - S(Z1)Kn(Z1,2;81),
t=spts; oM oM
(10)
|
where we have used that To evaluate Eq(10) in the case of a generakdependent

S it will prove convenient to make a Fourier transformation

Kn(X,2Z;:S)=exp(—r?/4s)Kn(z,;;9),

< L f d™ k1
x=(z1). (11) NZZ-19)= | m e s
Strictly speaking, the represenati@i0) is valid on the prod- xexp(—sk'—i(z—2z-1)k)
uct manifold, M=dMX[0,~]. However, if one is inter-
ested in the small asymptotics of the heat kernelhich is o _
local), the form of the interior becomes irrelevant, and Eq. S(zj)=f dm‘lk]-S(kj)exp(ikaj)
(10) can be used to calculate tledependent contributions (12)

on an almost arbitrary manifold. If there is a parameter
which damps long-range correlatiotes mass, for example
our results become approximately valid for the effective ac- - m-1 J- -
tion as well. The quality of such an approximation must be S(kj):f ———— Sz exp(—ik;z)).
. AT (2)

checked in each individual case.

To study the Casimir interaction between two Robin
boundarie§14] one must replace Eq11) by the Neumann However, we will first treat the case of a constant field,
heat kernel in the strigwhich can be also presented in a where it is not necessary to go to the Fourier-conjugate
closed forn). space.

. . . B. Heat kernel for constant S
2Indeed, the smallt asymptotics of the integral8) contains

boundaryintegrals with normal derivatives df (see, e.g., Gilkey In this case, an individual term in the double sum in Eq.
[9]), thus indicating the presence éffunction terms. (10) reads:
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2P 1+
dzfP(z)s" r( i J f dz ...dzym (T2
oM p! oM M
L[ s [(t=sy)sy| P2 0 D dm el »
xfodsnfo dsq,l...fo dsl(m f. b (2m 1[(t S (Sh—Sn-1) - - -S1]
><exp(—(t—sn)kﬁ— slk Yexp(— ik, (z—z,) — ik, 1[Za—Zh_1— .. . —iko(Z1—2)]). (13

The integration oveg; can be easily performed; it gives as a result
[(2m)™ 1]"8(kn—Kn-1) 8(Kn-1—Kq2) - . . 8(ky— ko). (14)

Thesed-functions can be used to integrate oker i #0. Integration ovek, gives then ¢/t)(™~ 1’2 After the change of
variables ay=s,/t, a,=(s,—s)/t, ...,a¢p=1-s,/t, the integration ovefa} reduces tol (p/2,—(1+p)/2,—-1/2,...,
—1/2), wherel is a particular value of the following integral:

n

N L(2A0+A;+2)T (Ay+1)2[] T'(A+1)
. =2
1(Ag,Ag, - - A= IT dai(apar)®o(ag+ap™]] o= — . (15
Saj=1 i=2
[(2A0+2)T| Ag+ > A+n+1
i=0

The final result for(13) reads: In particular, form=2, Eq.(17) can be seen to coincide
with the trace of the heat kernel given, for example, in Ref.
[19].
-p-1 H H 1 -
—J dz{P)(2) 20+ p- erl)2—. The result(17) is valid for a massless sc_alar field. How
(477)(M-1)12 n+p ever, the effect of a nonzero madd) can easily be sedffor
r T+1 instance, from Eq(7)] to reduce to multiplication of each

(16) term in the multiple reflection expansion of the heat kernel
by e*'\"z‘, thus leading to an overall factor in EQL7).

Note that each order in reflections gives one complete
order in powers of.

For n+p=4, this result can be checked against the ex-
pressions of15—17. Forp=0 we reproduce the heat kernel
expansion for a delta-potential in one dimensjas]. . .

The power series with individual terms given 6) can As befgre, we W'!I tgke‘ =1. The term .correspo.ndlng to
be summed up to give a closed expression for the heat kefl© reflection (=0) is independent o8 It is then given by

nel. Taking the smearing functioi=1, we obtain for its Ed-(16), with p=0, f=1 andn=0. _
trace As for the one-reflection contribution, from E@.3) it can

easily be seen to be

C. Expansion to the order of two reflections for
a z-dependentS

K(t)= ———[eSterf(S\b) +e51], 1 21-—m
(0= gy orale” e W+est, 17) K1=—,2t(2*”“”2f 4252
™ M
where V is the (infinite) volume of the boundary, and 21-m R
erf(Sylt) is the error function = Wt S(k=0). (18
erf(g\/{)z iJ’S\ngegz' Now, consider the term with=2, p=0 andf=1 in Eq.
Vlo (10):
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K f df d f d fd f (t=s9)5,| 2 1/2fdk1dk2dk3dkldk2~~ o
2= oM z oM zZ Z— ) t 52+Sl [(t—sp)(Sp—S1)S1] (277)3(m - (k) E(K,)
X exp(— K5 (t—Sp) — k(S —51) — k3sp)exp(—iky(2—25) — ikp(2o— 21) —iKg(21 — 2) +ikq 21 +1Kp2,). (19

Integration over, andz, gives rise to (2r)2™M Y s(k,— ks +Kk;) 8(ky— k,+k,). Theses-functions are then used to integrate
overk; andks. Next, we shiftk, to complete the square in the exponential and integrate (@héted k,. We thus obtain

1t S
ko= [ do=['as, [ Fasit-s+ 55,5127 iy oSk Ko expliz(Ry + o)
oM m™Jo 0

(4 t(m 1)/2
1. - .
><exp( — T IKi(t=sp s +K5(t—s7)s,+ 2k1k2(t—52)sl]> : (20

The integration ovedz can now be performed, which gives

1t S2 ~ o~ k2
Kzzgjodszfo dsy[(t—s,+51)(S,—51)] M2 Jdm‘lkS(k)S(—k)exp<—T[(sz—sl)(t—sz+sl)])

(47Tt)(m71)/2
or, after exponentiating the first factor

B 1 o *1/2 %
Kz—ﬂ_(mﬁ)(ml)/ZJd kS(k)S( k)jdszf dslj dzr(_)
2

k2
Z+ —

(S2— 51)(t_52+31)) .

Calling s;=s,—s;, and integrating by parts is,, one gets

t2

_ - o Z—1/2 1 k2
— m—1 _ _ 2¢(1 —
_W(4wt)(m‘1>’zf ™ KE(K)S( |<)fO dzr(f) fodsexp( z+ t)t s(1 s)).
2

After performing the integral irz, this last expression gives

t(3-m)/2 )1/2

fdm KSk)S(— k)f ds exp(—tk?s(1-s)). (21)

Ka= m(Am)mDP

Now, using its transformation properties under 1—s, the last integral in Eq(21) can be rewritten as

1/4 1
exp(—tk?s(1—s))= | ds———————exp(—tk?s)
0

fds EXp( tk?s(1— S))_zf dS (1— 4s)Y2s12

1
—5) gl

oom k2I k?
—Eex —t§ 0 tg,

wherel y(x) is the modified Bessel function of order 0. So, This completes the calculation of the trace of the heat
after replacing this into Eq(21), the contribution of two kernel to the order of two reflections. We stress that(28)
reflections to the trace of the heat kernel is seen to be is exact to this order, as it contains also all non-asymptotic
contributions. As in the consta@-case, for a massive field,
each order in the multiple reflection expansion turns out to
be multiplied bye™ M.
) 5 By going back to coordinate integrals, and expanding in
% k ) ( k ) we can write a less compact but more explicit form of the
xXexp —t—=|lgl t=]. (22 S

8 8 heat kernel asymptotics:

t(3-m)12
— m—-11,°¢ S
K, —2(4W)(m1)/2fd KS(k)S(—k)
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_ 2| S S N (S Y KoY, (S2- M)t
Kz ;0 LMszIz)a S(2) K(t) 2(477t)(m_1)/2[e erf(S\t) +e 1.
1 3 (26)
t—[(m-1)/2)+1+2] r |+§ r |+§ ) 5 _
(23) For S°*<M*, K(t) decays exponentially whetr—o0. On

(4ar)(M=1)2 7 T(21+2) the other hand, foS>>M?, due to the asymptotic large-t
behavior of the error functior (t) diverges exponentially in

Note that, in contrast to Eq(22), this expansion is this limit when S>0, and its Mellin transform cannot be

asymptotic, and it cannot be used for large values of naively performed. This is due to the presence of eigenmodes
of the forme™S", which satisfy Eq.(3) and fall off asr—
lIl. EEFECTIVE BOUNDARY ACTIONS +. These modes eventually correspond to negative eigen-

values of— 4%+ M?, and their contribution to thé function

The results of the previous section can be used to calcunust be explicitly calculated and added to the Mellin trans-
late some parts of the one-loop effective action induced oriorm of the trace of the heat kernel, once the divergent con-
the boundary by the bulk fluctuations. In what follows we tribution is subtracted from the last. As a consequence, as we
will, in fact, obtain the full one-loop effective action for a will see later, forS>>M? with S>0 the effective Lagrang-
constantSfield, and its kinetic piece in the case of @ffield  ian receives an imaginary contribution, and presents a sign
depending on the boundary coordinate. This will be done irambiguity. So, let us consider the three different situations in
the framework of the(-function regularization scheme a separate way.
[20,21).

In this regularization scheme, the effective action is given 1. <M?

by The zeta function can be easily calculated by Mellin-

1 transforming the expressio(26) for the trace of the heat
Wred= — —¢P(0)’. (24) kernel. Before integrating over the proper timé is conve-
2 nient to write the error function as an integral:

Here, D is the operator defined by Eq&) and (3). The L
Z-function ZP(s) is the Mellin transform of the trace of the e(Sz—Mz)terf(S\/f)ZZS\/Ef dge—[M2+(§2—1)82]t.
heat kernel of the operat@: mJo
(27)
P(s)=pu?Tr(D )

ﬂZS
I'(s)

f mdt 571 Tr(exp( — tD)). (25)
0

Thus,
K(t)= #( Zsﬁfldge—w%(gz—nsﬁt
The parametep with the dimension of a mass has been 2(4at)(m-DP2 mJo
introduced to make thé-function dimensionless. The result-
ing log(w) describes the renormalization ambiguity. _’_e(SZMZ)t)' (28)
In order to avoid infrared divergences, we will study the
zeta function for a massive bulk fiel®}) being its mass. As
we will see, the limitM — 0 is direct in some cases, while an |, this case, a closed expression for ghunction in terms

analytic continuation of the zeta function is required beforeys e hypergeometric function can be given. However, such
taking such limit in other cases. As already pointed out, they expression is not very useful in practical calculations. By
effect of this nonzero mass reduces to multiplication of eacrbsing Eqs(24) and(28) the effective Lagrangian for the case

. _n2
term in the trace of the heat kernel byM™. of a massive bulk field can be evaluated in a very fast and
efficient way in this case<M?2). In fact, since the inte-
A. C0|eman_Weinberg potent|a| on the boundary gral II’] Eq(28) ConvergeS UI"IIfOI‘m|y, the de”Vat'Ve W|th re-

spect tos can be performed, and it can be evaluated at

The Coleman-Weinberg potential is, by definition, the ef-:0 before actually doing the integral. The results for

fective action for constant background fields. In this case, the. 1,2,3,4,5 are given in Appendix C. This case is not rel-
expression16) ap_phes _for the trace of the hea\_t kernel. evant to the study of the problem wit =0.

Due to translational invariance, an overall divergence pro-
portional to the volume of the boundary will appear in the
effective action. This is not, however, an obstacle to the ap-
proach, since it is the Lagrangian density that has a physical As anticipated in the beginning of this subsection, our first
meaning for Coleman-Weinberg type effective actions. task will be, in this case, to identify the exponentially grow-

Before going to the actual calculation, let us explicitly ing part of the trace of the heat kerr{b). This can be done
rewrite the trace of the heat kernel for a massive bulk field by writing erf(Syt) = 1— erfc(Sy't), where

2. $>M?2, S>0
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subtracted modes. Also in Appendix B, this contribution is

2 * 2 .
erfc(S\/f)z—f dée ¢ shown to be given by
\/; St
V,LLZS( SZ_ M 2)7s+(m7 1)/2
is the complementary error function. From its behavior for gg’(s): 1
larget, it is clear that the piece to be subtracted from the (4w)(ml)lzr(m_)
trace of the heat kernel is given by
Ve(SLMZ)t m—1 3
Kain()= —————_ (29 M= jrd=9s
(4mt)(m-172 x| (-1)°s
m+1-2s
In Appendix B we show that, as we have already com- 2

mented, this piece comes from those modes of the Laplacian
eventually becoming negative. So, once this piece is sub- F( 1-m

tracted, the trace of the heat kernel reads T3 )F(l—s)

* 3—m)
v r

W[e‘sz’Mz”erdeﬁ)]. (30)

(31)

2

Ksur(t) =

As regards g?(s), it can be obtained by Mellin-
The Mellin transform of this quantity will give a first transforming Eq.30), with the complementary error func-
contribution, ng(s), to the relevant function [¢P(s)]. A tion written in integral form, and following the same steps as
second one will come from the explicit contribution of the in the S><M? case. It is given by

rls— 241
—vsuz |ST2F

(412 I(s)

(SZ_MZ)(I’T'I/Z)—(J./Z)—SF( m 1>F(m ) 2Mm—25

D
S - _S -
&ils) 2 ES Sr(m—2s)

1 m  M?
X F 5,1,14‘ E—S,g . (32)

From the total{ function, which is the sum of Eq$31) integral, since the last extends to a noncompact interval. For
and(32), the effective action fo8?>M? can be obtained for completeness, we give the analytic result for the effective
any dimensiorm, and S>0. In the odd dimensional cases, Lagrangian in the casem=1 in Appendix C.
where thel’ in the denominator supplies a power gfan Let us now discuss the limi =0. The limit of Eq.(31)
analytic result for the effective Lagrangian can be obtainedis direct. As regards Eq(32), it is valid for Re@)>(m
However, for even dimensions, the derivative with respect to-1)/2. The zero mass limit can be taken by restricting, fur-
s of the hypergeometric function can only be performed nu-thermore, to Ref) <m/2 (this is due to the fact that the trace
merically. At variance with the case in Sec. lll A1, the de- of the heat kernel behaves at infinity as a power, rather than
rivative cannot be evaluated at=0 before performing the a decaying exponentialin this strip of thes-plane, one has

m—1 1-m
F(T)F(l—s) F(s+ —)F(l—s)

5 V,LLZS (Sz)—s+(m—1)/2 . 2
¢ (S)JM:°:(4T,)(m*1)/2 m—1 (=) mti-2s| 3—-m
e [T ) F(T)
m 1 m m
Sm-zs-lr<s_5+§ F(S—EJrl F(E_S) .
27l'(s)
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From this{ function, the effective Lagrangian fovl =0 As anticipated, a sign ambiguity arises in the effective
andS>0 can be easily obtained for any dimension. We listLagrangian, due to the existence of negative eigenvalues.
the results fom=1 andm=2.

For m=1 we have: 3. >M?, S<0
1 < In this case, the trace of the heat kernel behaves 48!
L£e=—Zlog| — | =in (34)  times a power wheti—o, and a region in the plane exists
2 wu? where it can be Mellin-transformed. It is convenient to write
it as
Form=2
2 2
482 i K(t)=—————[e® Merfo(|S|\)].  (36)
ot 2 liog ) o[+, (35) 2(4art)(m- 172 s
2 ,U«2 2

The resultingZ function can be retrieved from E2) by
where y is Euler’s constant, ang(x) is the zero order po- changing the overall sign and turni®into |S|. Thus, it is
lygamma function. given by

rls—Tiq
Visluz 1572

(4,”_)(m71)/2 F(S)

(S2— M2)(M2)-(12)-s
79|

m 2Mm723
{34

r(s-3+3 R
S a4 (m-2s)

D =
£7(s) >

1 m  M?
X F 5,1,14‘ g—S,g . (37

The comments made after E@2) also apply to this case. The effective Lagrangian in the massive case is given, for
=1 in Appendix C.
In the limit M=0 one obtains, fo6<0

Vs F(s—ng% I‘(s—g+1)l“(2—s)
ZD(s>JM:o=WISI”“ZS‘1 ) (39)

and the effective actions fan=1 andm=2 are as follows. D-brane formation in open string theory. We are going to

Form=1 we have address these questions in a separate publication.
o L[S
L=~ 5'09 —|- (39 B. Effective kinetic energy
)73
In this section, we will evaluate the one-loop correction to
Form=2

the kinetic energy of the boundary fie(z), due to the
quantum fluctuations of the bulk scalar field Since we are
(40) interested only in the kinetic part of the effective actiam,
equivalently, the propagatorit will be enough to consider
the multiple reflection expansion to the order of two reflec-
Let us discuss some qualitative features of the potentialons (higher orders will contain higher powers of the field
obtained above. These potentials have a very nontriviag).
structure, especially foM # 0, providing a lot of possibili- The term involving no reflection at the boundary will be
ties for the symmetry breaking with the formation of aignored. In fact, it isSindependent and can always be elimi-
boundary condensate. The presence of an imaginary part forated through a redefinition of the cosmological constant on
S>M indicates an instability of the “Robin phase,” which the brane.
may eventually decay to some oth®irichlet?) phase. Here The one-reflection contribution to the zeta function is
we see many similarities with the tachyon condensation andeen, from Eq(18), to be given by

457
u

BE

2m

Lef log -2].
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Mm—221—m~ - o 5 o m-—2
L= (s S(kzo)f dttstl-m2—1g- (M7 u)t for Re(s)>T, (41)
T s 0
m—21—~ _ (m—2) 21—m f f :
o S 5 which can be meromorphically extended to the region
= > 3k=0) Re(s)<(m—2)/2. The limitM—0 can be seen to vanish in
7 (s) this region. So, no contribution from one reflection will ap-
p2) ([m-2)721-s} pear in the effective action, for any dimension
| — , Let us now go to the 2-reflection contribution. From Eg.
wu? (22) the zeta function is seen to be given by
Mmfs - 2 2 K2
d™IkSk)S(—k f dtts+[<3—m>/21—1exp(—t —+—| || t—
2<4w>m11V%xS>f XS u? p?/]° 8u?
3 3—m
B u" T s+ - f dmflk*é(k)*é( o K2 —s+[(m—3)/2] . 8M2 [(m-3)/2]-s
2(44)(M-D2r(s) 8u? k?
<El S 5-m s 3—m_1_ Kk or R m—3 45
§+ 4 '§+ 4 ’(k2+8M2)2 or os)> 2 (42)

whereF is the hypergeometric function. Now, from the properties of these functions, it is easy to see that it is anly for
=2 that the analytic extension must be performed before the zero mass limin=*8;, M can be taken to zero from the
beginning.

Let us look at two interesting cases.

1. m=2

In this case

(st 2
S fdm*lk” 03—k < o s e H=s) S
2 am o (s) SISk g 2 e NEREINERC M EAT A

4 2/ 14 2
k* L[ o8m? - I'(s) f[os,8 s 1. k* .
(k*+8M?)? k2 2 .47 2 47 7 (k¥+8M?)?

Fl SF3 S
27 2/M\372

Now, for —1/2<Re(s)<0, the second term inside the  The effective action is then seen to be given by
square brackets vanishes wheln=0, and one gets

weff=%f dkSk)S(—k)(k?) 12

1 k?

kz)—s—(llz) Since {,(s=0)#0, a dependence on Iqg remains.

22572#‘711—*

1
s+ E)F(_S)

o= x| 2y+2log 2+ 2y

1
wF(s)F(E—s)

(44) Comparing with Eq(23) we see that there is no term of this
form in the smallt asymptotics of the heat kernel. We con-

><fd|<’é(|<)”s(—|<)(E
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clude that the logg) term appears due the infrared behaviorboundary. It has been demonstrated2@] that for this latter

of the heat kernellarget). u thus plays the role of an case all infrared problems disappear if one uses the dilaton
infrared regulator, rather than a renormalization parametefepresentatiof23] for the potential and then collect powers
The corresponding ambiguity cannot be fixed by a normalof the dilaton instead of powers of the potential itself.
ization condition because this would require the presence of

a nonlocal (9;1) counterterm. Usually, such problems are 2. m=5

solved by a resummation of the perturbation theory series.

The IR singularityu—0 in Eq.(45) looks similar to the one Here, the limitM =0 can be taken directly in Eq42),
which appears in two dimensions on manifolds withoutand one easily gets

2

L - - k2 |~ (s s—1 )
=———— | d*kS(KS(—kK)| — Fl-,—— 11
‘s 2(477)2(5—1)J S0 )(8M2) 272

3
2 F(—_S) 2\ —s+1
_ s 2 P VN L
_27(77)5/2(5_1) F(Z—S)jd kS(k)S( k)(,u2> . (46)

The effective action can be easily obtained, and it is given Note that in any even dimension greater tha(®)=0.
by Thus, no logarithmic operator or dependenceuoappears in
the effective action.

1 -~ o~
weff= — 28(w)5’2f d*kS(k)S(—k)k? IV. CONCLUSIONS

) In this paper we used the multiple reflection expansion to
k ) ]
X .

2— y— (ﬂ(E) _ Iog( -~ (47) calculate(parts of the heat kernel and of the effective action
2 w? depending on the functio§ appearing in Robin boundary
conditions (3). In particular, we have calculated the
This effective action also depends on lpy(But his time, ~Coleman-Weinberg potential on the boundalgssuming
log(w) appears in front of a local actid®\ S. Such a term is constantS) and the quadra_ltlc part i containing an'arbl—
present in the smatl asymptotics of the heat kernel. There- frary number of tangential derivatives. Applications to
fore, the u-dependence appears due to ultraviolet divertachyon condensation in open string theory and to the brane-

gences. In principle, the dependenceoran be renormal- world scenario were briefly outlined. More detailed study of

ized away provided there is a suitable term in the classicadihese applications will be given elsewhere. ,
action. The basic relationg6) and (7) of the multiple reflection

As we have noted after E¢4), our results fom=5 can expansion method can be extended to other boundary value

be used also in a quantum brane world scenario. Suppog¥oblems, which correspond to taking more complicated op-
that the scalar field potential on the brane has the usual Higgdators instead of Just;‘ thed scalar fg_n_cnSnActmg in this N
form: V($)~ ¢*. Shas to be identified with the second de- way we may cover boundary conditions appearing in the
o i ) — — = context of Casimir energy calculatiof4], solid state phys-
rivative of .'[hIS potentlaI,S~d> - Hence, SAS~¢°A¢°.  jcs and stringgsee[25,26| for some examplés
Renormalizing this term would require a rather unusual in-

teraction term in the classical action. This is just another
example of exotic countertermi¥’] which appear in the
brane-world scenario. The finite part of the quantum correc- The authors acknowledge support from Fundacin Antor-
tion goes ak’log(k’). Already on dimensional grounds, itis chas and DAAD(grant 13887/1-8Z The work of D.V.V. has
clear that typical scalar theories in four dimensions do nobeen supported by the DFG project Bo 1112/11-1. H.F. and

present such strong growth of the effective action at largee.M.S. also acknowledge CONICETArgenting (grant
momenta. Therefore, we come to treot unexpectedcon-  0459/98.

clusion that the short distance quantum physics depends
strongly on the presence of extra dimensions. For more real-
istic brane models in curved space the heat kernel expansion
[7] predicts otheG?-terms proportional to geometric charac-  In this appendix we demonstrate that our results can be
teristics of the branéut independent df). These terms will  extended to the case of a curved boundary. To this end, we
dominate Eq(47) at small momenta. use the conformal variation technique, which is quite differ-

ACKNOWLEDGMENTS

APPENDIX A: CURVED BOUNDARY

064032-10



BOUNDARY DYNAMICS AND MULTIPLE REFLECTION . .. PHYSICAL REVIEW D65 064032

ent from the expansions used in the main text. For simplicity,
we neglect derivatives db K(f,t)=

The heat kernel coefficients for Robin boundary condi- (4m)M=D2]opm
tions are locally computable. This means that they can be
expressed through volume and surface integrals of some lo- X > S(z)L4(2)tY20-m+2)
cal invariants. In particular, on dimensional grounds, we can '
write

dzf(z)

[+3
2

i

(A6)

This is consistent witlh15,28 for | =1,2,3. As an additional
consistency check we see that all dependenam oesides in
a power of 4rt only.
The right hand side of EqA6) can again be represented
(A1) through the error functiofc.f. Eq.(17)]. All the calculations
of Sec. lll A can be repeated step by step, thus giving the
whereL ,, denotes the trace of the extrinsic curvature of theffective potential on a slightly curved boundary.
boundary. We dropped many other invariants which are not
relevant for the present calculation. It is important that the APPENDIX B: DISCUSSION OF NEGATIVE
constants, do not depend om. EIGENVALUES
Let us consider a local conformal transformation of the \we will, in the first place, prove that the exponentially
operatorD: D—e 2¢'D. All local invariants and the heat growing part (29) of the trace of the heat kernel fc8?
kernel coefficients change under this transformation. One. \12 js precisely the contribution due to the eigenvalues of
can show[15] that —3*+M? eventually becoming negative. Such eigenvalues
are of the form

a,(f,D)=(4m) (M1

xf dz(coS" 1+ cyf S %CoLa0S" 2 L),
oM

% a(le 2 D)=(m-n)a,(f,D).  (A2) N-=M?=S*+K?,

=0 wherek is the boundary momentum. Then, their contribution
to the trace of the heat kernel is given by

Transformation rules for individual local invariants can be
found in[15] (see alsd27]). Let us consider the terms which B M1y, o (M2— S5 kD)t
producef.,S""? (n=3) after conformal variation. Obvi- Kdi”(t)_(zﬂ_)mfl _wd ke '
ously, there are only two such terms:

o

where the prefactor is the density of states on the boundary.

d . (m=2)(n-1) L After making explicit the integration measure, one has
de e:oS - 2 f:mS 2\ 7r(m=1)/2
Kaip(t) = — m-1
(2m)™ T >
de LaaS" %——(m—1)f.,S""2 (A3) )
0 xf dkKn—2g~ (M=%t
0

One has to remember that the volume element on the bound-
ary is also changediz—e(M Vefqz,
Collecting the terms containingms“*2 on both sides of

By changing the integration variable kd=k?t, the final
result arises, which is

Eq. (A2), we obtain >2): Ve(sLMZ)t
Kaip ()= (4™ D (B1)
5 (M=2)co—(m=1)c;=(m=njc;.  (A4) Now, we will determine the contribution of these modes

to the zeta function in a direct way. It is given by

Equation(A4) can be solved giving: 2V p2sq(m-12

D —
{3(s)= , )m_lr(m—l)
C1=Col2. (A5) (2m 2
We can immediately calculate all terms in the heat kernel X o dkK™ (M2 =2+ k?) %,
expansion which are linear ih,, and contain arbitrary
power of S or, changing variables,
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V,LLZS

(4w)<m—1>’2r(

ZZD(S): [(_1)stz_Mzdkk(m3)/2(Sz_ Mz_k)—s+ foo 2dkk(mf3)/2(M2_SZ+ k)fs .
0 M

m—1 2

2

After performing the integrals, one finally gets

(m—l 1—m)
r T)F(l—S) r S+T F(l—S)

VILLZS(SZ_ M 2)7s+(m71)/2

D/c)— _1\-s
£2(9) R (=1 [mri-as * [Em (B2)
(4m) 2 2 2
|
APPENDIX C: COLEMAN-WEINBERG LAGRANGIANS Form=4
FOR M#0
1. S2<Mm? _
_ L£eM=———1 165~ 2IM2S+67(M2 - §?)3?
Form=1 144772 ( )
o 1 M-S M
L£e"=5log — (Cy +6(3MZS—283)I09<Z)
The dependence om can be renormalized away by requir- s
ing that the effective Lagrangian vanishes whén-. In + 12(M2—82)3’2arctar< —) 1 (CH
this case, this is equivalent to subtracting a field-independent VM-8
term, which is merely a redefinition of the cosmological con-
stant. After doing so, one gets Form=5
g 1 S
L=—log| 1— —|. (C2
2 M 1
L= ;[ —9M*—20M%s+18M%S
Form=2 768
S M2 M2 +12MS*~ 95"+ 12(M?~ §%)?log(M - S) .
L£f=—| —2+log— +2——=—
4 u? S (C6)
xarctar(L + 1 M2-S?.  (C3) 2.8°>M?, $>0
M2_2 4 : '
M*=S Form=1
The dependence om can again be eliminated by asking 5 )
the effective Lagrangian to vanish in the infinite mass limit. ref Elo S—M 4 aratan M i (€
But, in this case, this amounts to renormalizing a term linear 299 w? 9 ST
in S
Form=3
3.S°>M?, S<0
1
L£ef=——IM2-S2+2MS Form=1
167
M-S o L1 [S—M? M
_Z(MZ_SZ)IOQ(TH' (C4) L=~ Elog 2 —argtan EIE (C9
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