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Boundary dynamics and multiple reflection expansion for Robin boundary conditions
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In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a
functionSof the boundary fields: (¹N1S)f50. Information on quantum boundary dynamics is then encoded
in theS-dependent part of the effective action. In the present paper we extend the multiple reflection expansion
method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective
action~i! for constantS, ~ii ! to the orderS2 with an arbitrary number of tangential derivatives. Some applica-
tions to symmetry breaking effects, tachyon condensation and a brane world are briefly discussed.
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I. INTRODUCTION

Recent years have seen a considerable increase of th
terest in the relations between bulk and boundary dynam
One of the most exciting applications of the subject is
tachyon condensation in open string theory. Modern inte
in this mechanism of symmetry breaking is connected w
the papers by Sen and Zwiebach@1#, though certain ideas
were developed much earlier~see, e.g.,@2#!. Now, many dif-
ferent methods are being used in this field. An extens
literature survey can be found in@3#. The sigma model ap
proach@4# is probably the closest one to the technique of
present paper. The tachyon field enters the boundary ter
the open string action, and, therefore, modifies the o
string boundary conditions.

In the present paper we deal with a scalar theory o
manifold M, dimM5m. Let the classical action be of th
form

S~f!5E
M

dmx@~¹f!21V~f!#1E
]M

dm21xṼ~f!, ~1!

with two so far arbitrary potentialsV andṼ. If M is an open
string world surface, and iff is the string coordinate1 Xm,
then the boundary potentialṼ may be identified with the
boundary tachyon:Ṽ(f)ªT(X).

Let us splitf into its background partf̄ and the quantum
fluctuationsw: f5f̄1w. To calculate the one-loop effectiv
action we have to keep the part ofS which is quadratic inw:

S25E
M

dmxwDw1E
]M

dm21xw~2¹N2S!w, ~2!

*Email address: Michael.Bordag@itp.uni-leipzig.de
†Email address: falomir@obelix.fisica.unlp.edu.ar
‡Email address: mariel@obelix.fisica.unlp.edu.ar
§On leave from V.A. Fock Institute of Physics, St. Petersbu

University, 198904 St. Petersburg, Russia. Email addr
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1The coordinatesXm are scalars from the world surface point
view.
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where¹N is covariant derivative with respect to the inwa
pointing unit normal.D is a second order partial differentia
operator which depends onf̄, S52 1

2 Ṽ9(f̄); the prime de-
notes differentiation with respect tof. Boundary conditions
for the fluctuationsw follow from the requirement that the
boundary part of the action~2! vanishes. These can be eith
Dirichlet wu]M50 or Robin

~¹N1S!wu]M50 ~3!

boundary conditions. Both sets of boundary conditions
sure also the Hermiticity of the operatorD. In the present
paper we will consider Robin boundary conditions only. W
will be interested in the dependence on the functionS of the
heat kernel coefficients, the trace of the heat kernel, and
one-loop effective action.

The brane-world scenario@5# usually assumes that there
an interaction of the bulk fields which is confined on a s
face S. Many essential features of such interactions can
described by the action~1! where in the second term on
integrates over the surfaceS. One-loop quantum correction
are then given by the determinant of the operatorD subject
to the following matching conditions onS,

w15w2 ,

2~¹Nw!11~¹Nw!21
1

2
Ṽ~f̄ !w50, ~4!

where the subscripts ‘‘1 ’’ and ‘‘ 2 ’’ denote limiting values
on S from the two sides of the surface. It has been dem
strated in@6,7# that if the background fields are symmetr
under the reflection aboutS, the Ṽ-dependent part of the
heat kernel~and, consequently, that of the effective action! is
indeed described by the Robin boundary value problem~3!

with S52 1
4 Ṽ(f̄). Hence, the results for the effective actio

which we will obtain in this paper are valid also for th
brane-world scalar field~though they will be, of course
modified by the presence of the background curvature!.

These two examples—strings and brane-world—are
main physical motivations for our study. For this reason, o
explicit calculations will be carried out with an emphasis
dimensions two and five. However, since the main purp

s:
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of this paper is to develop a technique, we will not go too
in the applications~and will not give a more detailed litera
ture survey!. We reserve these subjects for future public
tions. Robin boundary conditions have also been conside
recently in the context of AdS conformal field theory~CFT!
@8#.

The heat kernel technique is by now a standard too
quantum field theory. It allows to extract divergences a
anomalies in a very efficient way, and to represent the
loop effective action in a nice geometric form. More deta
on related mathematics and physical applications may
found in the books@9#. Moreover, a knowledge of the effec
tive potential allows one to study symmetry breaking effe
with the formation of a~boundary! condensate. The imagi
nary part of the quantum potential tells us about vacu
instability, while the derivative part of the effective action
related to the momentum dependence of certain diagram

In previous papers@6,10#, we showed that the multiple
reflection expansion@11# is a powerful tool for studying the
asymptotics of the heat kernel, and applied it to some c
sical boundary problems, as well as singular potentials
second order operators on compact manifolds with sphe
symmetry.

In the present paper, we apply the same technique to
ond order differential operators on flatm-dimensional mani-
folds, acting on functions that satisfy, at th
(m21)-dimensional boundary, the conditions in Eq.~3!.

In Sec. II A, the general form of the smeared bound
heat kernel coefficients is obtained. In the particular case
constant fieldS, and after taking the smearing function
unity, the resulting series is shown to be summable, and
complete boundary contribution to the trace of the heat k
nel is then obtained for any dimensionm in Sec. II B.

Section II C contains the multiple reflection expansi
study of the boundary contribution to the trace of the h
kernel in the case of a fieldS depending on the boundar
coordinates. In this situation, each order in the multiple
flection expansion is shown to give, not only the asympto
contributions, but also the non-asymptotic ones.

Using these results, the boundary one-loop effective
grangian is evaluated for constantS in Sec. III A. The bound-
ary one-loop effective kinetic energy for a generalS(z) is
studied in Sec. III B.
fo
pl
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In Appendix A we show that our results for the trace
the heat kernel can be extended to curved boundaries.
pendix B contains some details on the treatment of poss
negative eigenvalues. Explicit expressions for the bound
part of the Coleman-Weinberg potential for massive fie
are given in Appendix C.

II. HEAT KERNEL

A. Multiple reflection expansion

In this paper we are interested in the dependence of
heat kernel and the effective action on boundary values
the background fieldf̄, through the functionS in the bound-
ary conditions ~3!. We perform actual calculations for
simple flat geometry. Our results must then be understoo
an approximation to more generic situations.

Let M be a flat,m-dimensional half space, andV(f)
50 in Eq. ~1! ~then D is free scalar Laplacian!. The heat
kernelK(x,y;t) is defined as a solution of the heat equati

~] t1Dx!K~x,y;t !50 ~5!

with the initial condition K(x,y;0)5d(x2y) inside the
manifold. It must be supplemented with~Robin! boundary
conditions when its first argument belongs to the bounda

The heat kernel for Robin boundary conditions satisfi
the Dyson equation

K~x,y;t !5KN~x,y;t !

1E
0

t

dsE
]M

dzKN~x,z;s!S~z!K~z,y;t2s!,

~6!

whereKN is the heat kernel for Neumann boundary con
tions (S50). It admits a solution in terms of a power seri
in S
K~x,y;t !5KN~x,y;t !1 (
n51

` E
0

t

dsnE
0

sn
dsn21 . . . E

0

s2
ds1E

]M
dzn . . .

3E
]M

dz13KN~x,zn ;t2sn!S~zn!KN~zn ,zn21 ;sn2sn21! . . . S~z1!KN~z1 ,y;s1!, ~7!
heat

which is nothing but a multiple reflection representation
the heat kernel. It is, of course, equivalent to the multi
reflection representation for the propagator@11#.

A very simple~and also very naive! way to derive Eqs.~6!
r
e
and~7! is to consider the boundary interaction term*]MwSw
as a perturbation to the Neumann problem, represent the
kernel asK(x,y;t)5@xuexp„2t(D1Sd]M)…uy# and expand
the exponential in a power series ofS. This derivation ig-
2-2
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nores completely all existence and convergence requ
ments, but reproduces correctly the combinatorics of the
pansion. Similar arguments fail for other types
perturbations. Equation~7! can be also derived from the co
responding equation in@6# using equivalence to sem
transparent boundaries. Note that, after suitable modifi
tions in the multiple reflection expansion,Smay be replaced
by a general differential operator@12#.

The representation~7! was used in the context of singula
potentials in@6# to prove some general properties of the h
kernel and also in@13# to calculate the heat trace asympto
ics.

Consider the smeared heat kernel

K~ f ,t !5E
M

dmx f~x!K~x,x;t !. ~8!

This is a mathematically consistent way to deal with t
distributional nature of the heat kernel diagonal.2 Consider-
q
s
te

ac
b

in

a
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ing just the integrated heat kernel (f 51) is insufficient for
many physical applications where one needs local quant
~as, e.g., the trace anomaly!. However, it can safely be take
equal to one when studying global quantities, such as
integrated heat kernel coefficients or the integratedz func-
tion. This will be the case for the applications to be cons
ered in this paper.

SupposeM is a manifold of product type so that, near th
boundary, it can be decomposed as]M3@0,d#. Let x
5(z,r ), wherez is a coordinate on the boundary, andr is a
normal coordinate. The smearing functionf can be expanded
in a Taylor series inr:

f ~z,r !5 (
p50

`
r p

p!
f (p)~z!, ~9!

wheref (p)(z) denotes the boundary value of thep-th normal
derivative. By substituting Eqs.~7! and ~9! in Eq. ~8! and
integrating overr we obtain
K~ f ,t !5 (
n50

`

(
p50

` E
]M

dz f(p)~z!
2p

p!
GS 11p

2 D E
0

t

dsnE
0

sn
dsn21 . . . E

0

s2
ds1

3S ~ t2sn!s1

t2sn1s1
D (11p)/2E

]M
dzn . . . E

]M
dz1KN~z,zn ;t2sn!S~zn!KN~zn ,zn21 ;sn2sn21! . . . S~z1!KN~z1 ,z;s1!,

~10!
n

ld,
ate

q.
where we have used that

KN~x,zi ;s!5exp~2r 2/4s!KN~z,zi ;s!,

x5~z,r !. ~11!

Strictly speaking, the represenation~10! is valid on the prod-
uct manifold, M5]M3@0,̀ #. However, if one is inter-
ested in the smallt asymptotics of the heat kernel~which is
local!, the form of the interior becomes irrelevant, and E
~10! can be used to calculate theS-dependent contribution
on an almost arbitrary manifold. If there is a parame
which damps long-range correlations~as mass, for example!,
our results become approximately valid for the effective
tion as well. The quality of such an approximation must
checked in each individual case.

To study the Casimir interaction between two Rob
boundaries@14# one must replace Eq.~11! by the Neumann
heat kernel in the strip~which can be also presented in
closed form!.

2Indeed, the smallt asymptotics of the integral~8! contains
boundary integrals with normal derivatives off ~see, e.g., Gilkey
@9#!, thus indicating the presence ofd-function terms.
.

r

-
e

To evaluate Eq.~10! in the case of a general,z-dependent
S, it will prove convenient to make a Fourier transformatio

KN~zi ,zi 21 ;s!5E dm21ki

~2p!(m21)/2

1

Aps

3exp„2ski
22 i ~zi2zi 21!k…

S~zj !5E dm21k̃ j S̃~ k̃ j !exp~ i k̃ jzj !

~12!

S̃~ k̃ j !5E dm21zj

~2p!m21
S~zj !exp~2 i k̃ jzj !.

However, we will first treat the case of a constant fie
where it is not necessary to go to the Fourier-conjug
space.

B. Heat kernel for constant S

In this case, an individual term in the double sum in E
~10! reads:
2-3
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E
]M

dz f(p)~z!Sn
2p

p!
GS 11p

2 D E
]M

. . . E
]M

dz1 . . . dznp2(n11)/2

3E
0

t

dsnE
0

sn
dsn21 . . . E

0

s2
ds1S ~ t2sn!s1

t2sn1s1
D (11p)/2E )

i 50

n
dm21ki

~2p!m21
@~ t2sn!~sn2sn21! . . . s1#21/2

3exp„2~ t2sn!kn
22 . . . 2s1k0

2
…exp„2 ikn~z2zn!2 ikn21@zn2zn212 . . . 2 ik0~z12z!#…. ~13!

The integration overzi can be easily performed; it gives as a result

@~2p!m21#nd~kn2kn21!d~kn212kn22! . . . d~k12k0!. ~14!

Thesed-functions can be used to integrate overki , iÞ0. Integration overk0 gives then (p/t)(m21)/2. After the change of
variablesa15s1 /t, a25(s22s1)/t, . . . ,a0512sn /t, the integration over$a% reduces toI „p/2,2(11p)/2,21/2, . . . ,
21/2…, whereI is a particular value of the following integral:

I ~A0 ,A1 , . . . ,An!5E
(a i51

) da i~a0a1!A0~a01a1!A1)
i 52

n

a i
Ai5

G~2A01A112!G~A011!2)
i 52

n

G~Ai11!

G~2A012!GS A01(
i 50

n

Ai1n11D . ~15!
let

ex
el

ke

e
ef.

-

nel
The final result for~13! reads:

1

~4p!(m21)/2E]M
dz f(p)~z!Snt1/2(n1p2m11)

22p21

GS n1p

2
11D .

~16!

Note that each order in reflections gives one comp
order in powers oft.

For n1p<4, this result can be checked against the
pressions of@15–17#. For p50 we reproduce the heat kern
expansion for a delta-potential in one dimension@18#.

The power series with individual terms given by~16! can
be summed up to give a closed expression for the heat
nel. Taking the smearing function,f 51, we obtain for its
trace

K~ t !5
V

2~4pt !(m21)/2
@eS2terf~SAt !1eS2t#, ~17!

where V is the ~infinite! volume of the boundary, and
erf(SAt) is the error function

erf~SAt !5
2

Ap
E

0

SAt
dje2j2

.

06403
e
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In particular, form52, Eq. ~17! can be seen to coincid
with the trace of the heat kernel given, for example, in R
@19#.

The result~17! is valid for a massless scalar field. How
ever, the effect of a nonzero mass~M! can easily be seen@for
instance, from Eq.~7!# to reduce to multiplication of each
term in the multiple reflection expansion of the heat ker

by e2M2t, thus leading to an overall factor in Eq.~17!.

C. Expansion to the order of two reflections for
a z-dependentS

As before, we will takef 51. The term corresponding to
no reflection (n50) is independent ofS. It is then given by
Eq. ~16!, with p50, f 51 andn50.

As for the one-reflection contribution, from Eq.~13! it can
easily be seen to be

K15
212m

pm/2
t (22m)/2E

]M
dzS~z!

5
212m

pm/2
t (22m)/2S̃~ k̃50!. ~18!

Now, consider the term withn52, p50 andf 51 in Eq.
~10!:
2-4
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K25E
]M

dzE
]M

dz1E
]M

dz2

1

pE0

t

ds2E
0

s2
ds1S ~ t2s2!s1

t2s21s1
D 1/2

@~ t2s2!~s22s1!s1#21/2E dk1dk2dk3dk̃1dk̃2

~2p!3(m21)
S̃~ k̃1!S̃~ k̃2!

3exp„2k1
2~ t2s2!2k2

2~s22s1!2k3
2s1…exp„2 ik1~z2z2!2 ik2~z22z1!2 ik3~z12z!1 i k̃1z11 i k̃2z2…. ~19!

Integration overz1 andz2 gives rise to (2p)2(m21)d(k22k31 k̃1)d(k12k21 k̃2). Thesed-functions are then used to integra
over k1 andk3. Next, we shiftk2 to complete the square in the exponential and integrate over~shifted! k2. We thus obtain

K25E
]M

dz
1

pE0

t

ds2E
0

s2
ds1@~ t2s21s1!~s22s1!#21/2

1

~4pt !(m21)/2E dk̃1dk̃2S̃~ k̃1!S̃~ k̃2!exp„iz~ k̃11 k̃2!…

3expS 2
1

t
@ k̃1

2~ t2s1!s11 k̃2
2~ t2s2!s212k̃1k̃2~ t2s2!s1# D . ~20!

The integration overdz can now be performed, which gives

K25
1

pE0

t

ds2E
0

s2
ds1@~ t2s21s1!~s22s1!#21/2

1

~4pt !(m21)/2E dm21kS̃~k!S̃~2k!expS 2
k2

t
@~s22s1!~ t2s21s1!# D

or, after exponentiating the first factor

K25
1

p~4pt !(m21)/2E dm21kS̃~k!S̃~2k!E
0

t

ds2E
0

s2
ds1E

0

`

dz
z21/2

GS 1

2D expS 2S z1
k2

t D ~s22s1!~ t2s21s1! D .

Calling s185s22s1, and integrating by parts ins2, one gets

K25
t2

p~4pt !(m21)/2E dm21kS̃~k!S̃~2k!E
0

`

dz
z21/2

GS 1

2D E0

1

dsexpS 2S z1
k2

t D t2s~12s! D .

After performing the integral inz, this last expression gives

K25
t (32m)/2

p~4p!(m21)/2E dm21kS̃~k!S̃~2k!E
0

1

ds
~12s!1/2

s1/2
exp„2tk2s~12s!…. ~21!

Now, using its transformation properties unders→12s, the last integral in Eq.~21! can be rewritten as

E
0

1

ds
~12s!1/2

s1/2
exp„2tk2s~12s!…5

1

2E0

1

ds
1

~12s!1/2s1/2
exp„2tk2s~12s!…5E

0

1/4

ds
1

~124s!1/2s1/2
exp~2tk2s!

5
p

2
expS 2t

k2

8 D I 0S t
k2

8 D ,
o, eat

tic
,
to

n
he
whereI 0(x) is the modified Bessel function of order 0. S
after replacing this into Eq.~21!, the contribution of two
reflections to the trace of the heat kernel is seen to be

K25
t (32m)/2

2~4p!(m21)/2E dm21kS̃~k!S̃~2k!

3expS 2t
k2

8 D I 0S t
k2

8 D . ~22!
06403
This completes the calculation of the trace of the h
kernel to the order of two reflections. We stress that Eq.~22!
is exact to this order, as it contains also all non-asympto
contributions. As in the constant-S case, for a massive field
each order in the multiple reflection expansion turns out
be multiplied bye2M2t.

By going back to coordinate integrals, and expanding it,
we can write a less compact but more explicit form of t
heat kernel asymptotics:
2-5
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K2;(
l 50

` E
]M

dzS~z!]2lS~z!

3
t2[(m21)/2]1112l

~4p!(m21)/2

GS l 1
1

2DGS l 1
3

2D
p l !G~2l 12!

. ~23!

Note that, in contrast to Eq.~22!, this expansion is
asymptotic, and it cannot be used for large values oft.

III. EFFECTIVE BOUNDARY ACTIONS

The results of the previous section can be used to ca
late some parts of the one-loop effective action induced
the boundary by the bulk fluctuations. In what follows w
will, in fact, obtain the full one-loop effective action for
constantSfield, and its kinetic piece in the case of anSfield
depending on the boundary coordinate. This will be done
the framework of thez-function regularization schem
@20,21#.

In this regularization scheme, the effective action is giv
by

Wreg52
1

2
zD~0!8. ~24!

Here, D is the operator defined by Eqs.~2! and ~3!. The
z-function zD(s) is the Mellin transform of the trace of th
heat kernel of the operatorD:

zD~s!5m2sTr~D2s!

5
m2s

G~s!
E

0

`

dt ts21Tr„exp~2tD !…. ~25!

The parameterm with the dimension of a mass has be
introduced to make thez-function dimensionless. The resul
ing log(m) describes the renormalization ambiguity.

In order to avoid infrared divergences, we will study t
zeta function for a massive bulk field,M being its mass. As
we will see, the limitM→0 is direct in some cases, while a
analytic continuation of the zeta function is required befo
taking such limit in other cases. As already pointed out,
effect of this nonzero mass reduces to multiplication of e
term in the trace of the heat kernel bye2M2t.

A. Coleman-Weinberg potential on the boundary

The Coleman-Weinberg potential is, by definition, the
fective action for constant background fields. In this case,
expression~16! applies for the trace of the heat kernel.

Due to translational invariance, an overall divergence p
portional to the volume of the boundary will appear in t
effective action. This is not, however, an obstacle to the
proach, since it is the Lagrangian density that has a phys
meaning for Coleman-Weinberg type effective actions.

Before going to the actual calculation, let us explicit
rewrite the trace of the heat kernel for a massive bulk fie
06403
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K~ t !5
V

2~4pt !(m21)/2
@e(S22M2)terf~SAt !1e(S22M2)t#.

~26!

For S2,M2, K(t) decays exponentially whent→`. On
the other hand, forS2.M2, due to the asymptotic large-
behavior of the error function,K(t) diverges exponentially in
this limit when S.0, and its Mellin transform cannot b
naively performed. This is due to the presence of eigenmo
of the form e2Sr, which satisfy Eq.~3! and fall off asr→
1`. These modes eventually correspond to negative eig
values of2]21M2, and their contribution to thez function
must be explicitly calculated and added to the Mellin tran
form of the trace of the heat kernel, once the divergent c
tribution is subtracted from the last. As a consequence, as
will see later, forS2.M2 with S.0 the effective Lagrang-
ian receives an imaginary contribution, and presents a s
ambiguity. So, let us consider the three different situations
a separate way.

1. S2ËM 2

The zeta function can be easily calculated by Mell
transforming the expression~26! for the trace of the hea
kernel. Before integrating over the proper timet, it is conve-
nient to write the error function as an integral:

e(S22M2)terf~SAt !52SA t

pE0

1

dje2[ M21(j221)S2] t.

~27!

Thus,

K~ t !5
V

2~4pt !(m21)/2S 2SA t

pE0

1

dje2[ M21(j221)S2] t

1e(S22M2)tD . ~28!

In this case, a closed expression for thez-function in terms
of the hypergeometric function can be given. However, su
an expression is not very useful in practical calculations.
using Eqs.~24! and~28! the effective Lagrangian for the cas
of a massive bulk field can be evaluated in a very fast a
efficient way in this case (S2,M2). In fact, since the inte-
gral in Eq.~28! converges uniformly, the derivative with re
spect tos can be performed, and it can be evaluated as
50 before actually doing the integral. The results form
51,2,3,4,5 are given in Appendix C. This case is not r
evant to the study of the problem withM50.

2. S2ÌM 2, SÌ0

As anticipated in the beginning of this subsection, our fi
task will be, in this case, to identify the exponentially grow
ing part of the trace of the heat kernel~26!. This can be done
by writing erf(SAt)512erfc(SAt), where
2-6
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erfc~SAt !5
2

Ap
E

SAt

`

dje2j2

is the complementary error function. From its behavior
large t, it is clear that the piece to be subtracted from t
trace of the heat kernel is given by

Kdiv~ t !5
Ve(S22M2)t

~4pt !(m21)/2
. ~29!

In Appendix B we show that, as we have already co
mented, this piece comes from those modes of the Lapla
eventually becoming negative. So, once this piece is s
tracted, the trace of the heat kernel reads

Ksub~ t !5
2V

2~4pt !(m21)/2
@e(S22M2)terfc~SAt !#. ~30!

The Mellin transform of this quantity will give a firs
contribution, z1

D(s), to the relevantz function @zD(s)#. A
second one will come from the explicit contribution of th
s,

ed
t t
u

e-

06403
r
e

-
an
b-

subtracted modes. Also in Appendix B, this contribution
shown to be given by

z2
D~s!5

Vm2s~S22M2!2s1(m21)/2

~4p!(m21)/2GS m21

2 D

3F ~21!2s

GS m21

2 DG~12s!

GS m1122s

2 D

1

GS s1
12m

2 DG~12s!

GS 32m

2 D G . ~31!

As regards z1
D(s), it can be obtained by Mellin-

transforming Eq.~30!, with the complementary error func
tion written in integral form, and following the same steps
in the S2,M2 case. It is given by
z1
D~s!5

2VSm2s

2~4p!(m21)/2

GS s2
m

2
11D

G~s! F ~S22M2!(m/2)2(1/2)2s

pS
GS s2

m

2
1

1

2DGS m

2
2sD2

2Mm22s

S2p1/2~m22s!

3FS 1

2
,1,11

m

2
2s,

M2

S2 D G . ~32!
For
ive

ur-
e
han
From the totalz function, which is the sum of Eqs.~31!
and~32!, the effective action forS2.M2 can be obtained for
any dimensionm, andS.0. In the odd dimensional case
where theG in the denominator supplies a power ofs, an
analytic result for the effective Lagrangian can be obtain
However, for even dimensions, the derivative with respec
s of the hypergeometric function can only be performed n
merically. At variance with the case in Sec. III A 1, the d
rivative cannot be evaluated ats50 before performing the
.
o
-

integral, since the last extends to a noncompact interval.
completeness, we give the analytic result for the effect
Lagrangian in the casem51 in Appendix C.

Let us now discuss the limitM50. The limit of Eq.~31!
is direct. As regards Eq.~32!, it is valid for Re(s).(m
21)/2. The zero mass limit can be taken by restricting, f
thermore, to Re(s),m/2 ~this is due to the fact that the trac
of the heat kernel behaves at infinity as a power, rather t
a decaying exponential!. In this strip of thes-plane, one has
zD~s!cM505
Vm2s

~4p!(m21)/2H ~S2!2s1(m21)/2

GS m21

2 D F ~21!2s

GS m21

2 DG~12s!

GS m1122s

2 D 1

GS s1
12m

2 DG~12s!

GS 32m

2 D G
2Sm22s21

GS s2
m

2
1

1

2DGS s2
m

2
11DGS m

2
2sD

2pG~s! J . ~33!
2-7
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From thisz function, the effective Lagrangian forM50
andS.0 can be easily obtained for any dimension. We
the results form51 andm52.

For m51 we have:

L eff52
1

2
logS S2

m2D 6 ip. ~34!

For m52

L eff52
S

2p F logS 4S2

m2 D 22G6
iS

2
, ~35!

whereg is Euler’s constant, andc(x) is the zero order po-
lygamma function.
tia
vi

a
t
h

an

06403
t
As anticipated, a sign ambiguity arises in the effecti

Lagrangian, due to the existence of negative eigenvalue

3. S2ÌM 2, SË0

In this case, the trace of the heat kernel behaves ase2M2t

times a power whent→`, and a region in thes plane exists
where it can be Mellin-transformed. It is convenient to wr
it as

K~ t !5
V

2~4pt !(m21)/2
@e(S22M2)terfc~ uSuAt !#. ~36!

The resultingz function can be retrieved from Eq.~32! by
changing the overall sign and turningS into uSu. Thus, it is
given by
for
zD~s!5
VuSum2s

2~4p!(m21)/2

GS s2
m

2
11D

G~s! F ~S22M2!(m/2)2(1/2)2s

puSu
GS s2

m

2
1

1

2DGS m

2
2sD2

2Mm22s

S2p1/2~m22s!

3FS 1

2
,1,11

m

2
2s,

M2

S2 D G . ~37!

The comments made after Eq.~32! also apply to this case. The effective Lagrangian in the massive case is given,m
51 in Appendix C.

In the limit M50 one obtains, forS,0

zD~s!cM505
Vm2s

2~4p!(m21)/2
uSum22s21

GS s2
m

2
1

1

2DGS s2
m

2
11DGS m

2
2sD

pG~s!
~38!
to

to

c-
ld

e
i-
on

is
and the effective actions form51 andm52 are as follows.
For m51 we have

L eff52
1

2
logS S2

m2D . ~39!

For m52

L eff5
uSu
2p F logS 4S2

m2 D 22G . ~40!

Let us discuss some qualitative features of the poten
obtained above. These potentials have a very nontri
structure, especially forMÞ0, providing a lot of possibili-
ties for the symmetry breaking with the formation of
boundary condensate. The presence of an imaginary par
S.M indicates an instability of the ‘‘Robin phase,’’ whic
may eventually decay to some other~Dirichlet?! phase. Here
we see many similarities with the tachyon condensation
ls
al

for

d

D-brane formation in open string theory. We are going
address these questions in a separate publication.

B. Effective kinetic energy

In this section, we will evaluate the one-loop correction
the kinetic energy of the boundary fieldS(z), due to the
quantum fluctuations of the bulk scalar fieldf. Since we are
interested only in the kinetic part of the effective action~or,
equivalently, the propagator!, it will be enough to consider
the multiple reflection expansion to the order of two refle
tions ~higher orders will contain higher powers of the fie
S).

The term involving no reflection at the boundary will b
ignored. In fact, it isS-independent and can always be elim
nated through a redefinition of the cosmological constant
the brane.

The one-reflection contribution to the zeta function
seen, from Eq.~18!, to be given by
2-8
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z15
mm22212m

pm/2G~s!
S̃~ k̃50!E

0

`

dtts1[(22m)/2]21e2(M2/m2)t

5

mm22GS s2
~m22!

2 D212m

pm/2G~s!
S̃~ k̃50!

3S M2

m2 D $[(m22)/2]2s%

,

e

06403
for Re~s!.
m22

2
, ~41!

which can be meromorphically extended to the reg
Re(s),(m22)/2. The limitM→0 can be seen to vanish i
this region. So, no contribution from one reflection will a
pear in the effective action, for any dimensionm.

Let us now go to the 2-reflection contribution. From E
~22! the zeta function is seen to be given by
for
e

mm23

2~4p!(m21)/2G~s!
E dm21kS̃~k!S̃~2k!E

0

`

dtts1[(32m)/2]21expS 2tS k2

8m2
1

M2

m2 D D I 0S t
k2

8m2D
5

mm23GS s1
32m

2 D
2~4p!(m21)/2G~s!

E dm21kS̃~k!S̃~2k!S k2

8m2D 2s1[(m23)/2]S 11
8M2

k2 D [(m23)/2]2s

3FS s

2
1

52m

4
,
s

2
1

32m

4
;1;

k4

~k218M2!2D for Re~s!.
m23

2
, ~42!

whereF is the hypergeometric function. Now, from the properties of these functions, it is easy to see that it is onlym
52 that the analytic extension must be performed before the zero mass limit. Form>3, M can be taken to zero from th
beginning.

Let us look at two interesting cases.

1. mÄ2

In this case

z25

m21GS s1
1

2D
2~4p!1/2G~s!

E dm21kS̃~k!S̃~2k!S k2

8m2D 2s2(1/2)S 11
8M2

k2 D 2(1/2)2sF G~2s!

GS 1

4
2

s

2DGS 3

4
2

s

2D FS s

2
1

3

4
,
s

2
1

1

4
;s;1

2
k4

~k218M2!2D 1S 28M2

k2 D 2s
G~s!

GS 1

4
1

s

2DGS 3

4
1

s

2D FS 2
s

2
1

3

4
,2

s

2
1

1

4
;12s;12

k4

~k218M2!2D G . ~43!
is
n-
Now, for 21/2,Re(s),0, the second term inside th
square brackets vanishes whenM50, and one gets

z25

22s22m21GS s1
1

2DG~2s!

pG~s!GS 1

2
2sD

3E dkS̃~k!S̃~2k!S k2

m2D 2s2(1/2)

. ~44!
The effective action is then seen to be given by

Weff5
1

2pE dkS̃~k!S̃~2k!~k2!21/2

3F2g12 log 212cS 1

2D2 logS k2

m2D G . ~45!

Since z2(s50)Þ0, a dependence on log(m) remains.
Comparing with Eq.~23! we see that there is no term of th
form in the smallt asymptotics of the heat kernel. We co
2-9
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clude that the log(m) term appears due the infrared behav
of the heat kernel~large t). m thus plays the role of an
infrared regulator, rather than a renormalization parame
The corresponding ambiguity cannot be fixed by a norm
ization condition because this would require the presenc
a nonlocal (]z

21) counterterm. Usually, such problems a
solved by a resummation of the perturbation theory ser
The IR singularitym→0 in Eq.~45! looks similar to the one
which appears in two dimensions on manifolds witho
e

e-
er

ic

o
ig
e-

in
he

ec
s
no
rg

n
ea
si
c-

06403
r

r.
l-
of

s.

t

boundary. It has been demonstrated in@22# that for this latter
case all infrared problems disappear if one uses the dila
representation@23# for the potential and then collect powe
of the dilaton instead of powers of the potential itself.

2. mÄ5

Here, the limitM50 can be taken directly in Eq.~42!,
and one easily gets
z55
m2

2~4p!2~s21!
E d4kS̃~k!S̃~2k!S k2

8m2D 2s11

FS s

2
,
s21

2
;1;1D

5
m2

27~p!5/2~s21!

GS 3

2
2sD

G~22s!
E d4kS̃~k!S̃~2k!S k2

m2D 2s11

. ~46!
to
n

y
e

to
ne-
of

alue
op-

the

or-

nd

be
we

er-
The effective action can be easily obtained, and it is giv
by

Weff52
1

28~p!5/2E d4kS̃~k!S̃~2k!k2

3F22g2cS 3

2D2 logS k2

m2D G . ~47!

This effective action also depends on log(m). But his time,
log(m) appears in front of a local actionSDS. Such a term is
present in the smallt asymptotics of the heat kernel. Ther
fore, the m-dependence appears due to ultraviolet div
gences. In principle, the dependence onm can be renormal-
ized away provided there is a suitable term in the class
action.

As we have noted after Eq.~4!, our results form55 can
be used also in a quantum brane world scenario. Supp
that the scalar field potential on the brane has the usual H
form: Ṽ(f);f4. S has to be identified with the second d
rivative of this potential,S;f̄2. Hence, SDS;f̄2Df̄2.
Renormalizing this term would require a rather unusual
teraction term in the classical action. This is just anot
example of exotic counterterms@7# which appear in the
brane-world scenario. The finite part of the quantum corr
tion goes ask2log(k2). Already on dimensional grounds, it i
clear that typical scalar theories in four dimensions do
present such strong growth of the effective action at la
momenta. Therefore, we come to the~not unexpected! con-
clusion that the short distance quantum physics depe
strongly on the presence of extra dimensions. For more r
istic brane models in curved space the heat kernel expan
@7# predicts otherS2-terms proportional to geometric chara
teristics of the brane~but independent ofk). These terms will
dominate Eq.~47! at small momenta.
n

-

al

se
gs

-
r

-

t
e

ds
l-

on

Note that in any even dimension greater than 2,z(0)50.
Thus, no logarithmic operator or dependence onm appears in
the effective action.

IV. CONCLUSIONS

In this paper we used the multiple reflection expansion
calculate~parts of! the heat kernel and of the effective actio
depending on the functionS appearing in Robin boundar
conditions ~3!. In particular, we have calculated th
Coleman-Weinberg potential on the boundary~assuming
constantS) and the quadratic part inS containing an arbi-
trary number of tangential derivatives. Applications
tachyon condensation in open string theory and to the bra
world scenario were briefly outlined. More detailed study
these applications will be given elsewhere.

The basic relations~6! and ~7! of the multiple reflection
expansion method can be extended to other boundary v
problems, which correspond to taking more complicated
erators instead of just the scalar functionS. Acting in this
way we may cover boundary conditions appearing in
context of Casimir energy calculations@24#, solid state phys-
ics and strings~see@25,26# for some examples!.
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APPENDIX A: CURVED BOUNDARY

In this appendix we demonstrate that our results can
extended to the case of a curved boundary. To this end,
use the conformal variation technique, which is quite diff
2-10
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ent from the expansions used in the main text. For simplic
we neglect derivatives ofS.

The heat kernel coefficients for Robin boundary con
tions are locally computable. This means that they can
expressed through volume and surface integrals of some
cal invariants. In particular, on dimensional grounds, we c
write

an~ f ,D !.~4p!2(m21)/2

3E
]M

dz~c0Sn211c1f ;mSn22c2LaaS
n221 . . . !,

~A1!

whereLaa denotes the trace of the extrinsic curvature of
boundary. We dropped many other invariants which are
relevant for the present calculation. It is important that
constantsck do not depend onm.

Let us consider a local conformal transformation of t
operatorD: D→e22e fD. All local invariants and the hea
kernel coefficients change under this transformation. O
can show@15# that

d

de U
e50

an~1,e22e fD !5~m2n!an~ f ,D !. ~A2!

Transformation rules for individual local invariants can
found in@15# ~see also@27#!. Let us consider the terms whic
produce f ;mSn22 (n>3) after conformal variation. Obvi-
ously, there are only two such terms:

d

de U
e50

Sn21→ ~m22!~n21!

2
f ;mSn22

d

de U
e50

LaaS
n22→2~m21! f ;mSn22. ~A3!

One has to remember that the volume element on the bo
ary is also changed:dz→e(m21)e fdz.

Collecting the terms containingf ;mSn22 on both sides of
Eq. ~A2!, we obtain (n.2):

n21

2
~m22!c02~m21!c25~m2n!c1 . ~A4!

Equation~A4! can be solved giving:

c15c0/2. ~A5!

We can immediately calculate all terms in the heat ker
expansion which are linear inLab and contain arbitrary
power ofS:
06403
y,

-
e

lo-
n

e
ot
e

e

d-

l

K~ f ,t !.
1

~4p!(m21)/2E]M
dz f~z!

3(
l

Sl~z!Laa~z!t1/2(l 2m12)
l

4GS l 13

2 D .

~A6!

This is consistent with@15,28# for l 51,2,3. As an additional
consistency check we see that all dependence onm resides in
a power of 4pt only.

The right hand side of Eq.~A6! can again be represente
through the error function@c.f. Eq.~17!#. All the calculations
of Sec. III A can be repeated step by step, thus giving
effective potential on a slightly curved boundary.

APPENDIX B: DISCUSSION OF NEGATIVE
EIGENVALUES

We will, in the first place, prove that the exponential
growing part ~29! of the trace of the heat kernel forS2

.M2 is precisely the contribution due to the eigenvalues
2]21M2 eventually becoming negative. Such eigenvalu
are of the form

l25M22S21k2,

wherek is the boundary momentum. Then, their contributi
to the trace of the heat kernel is given by

Kdiv~ t !5
V

~2p!m21E2`

`

dm21ke2(M22S21k2)t,

where the prefactor is the density of states on the bound
After making explicit the integration measure, one has

Kdiv~ t !5
2Vp (m21)/2

~2p!m21GS m21

2 D
3E

0

`

dkkm22e2(M22S21k2)t.

By changing the integration variable tok85k2t, the final
result arises, which is

Kdiv~ t !5
Ve(S22M2)t

~4pt !(m21)/2
. ~B1!

Now, we will determine the contribution of these mod
to the zeta function in a direct way. It is given by

z2
D~s!5

2Vm2sp (m21)/2

~2p!m21GS m21

2 D
3E

0

`

dkkm22~M22S21k2!2s,

or, changing variables,
2-11
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z2
D~s!5

Vm2s

~4p!(m21)/2GS m21

2 D F ~21!2sE
0

S22M2

dkk(m23)/2~S22M22k!2s1E
S22M2

`

dkk(m23)/2~M22S21k!2sG .
After performing the integrals, one finally gets

z2
D~s!5

Vm2s~S22M2!2s1(m21)/2

~4p!(m21)/2GS m21

2 D F ~21!2s

GS m21

2 DG~12s!

GS m1122s

2 D 1

GS s1
12m

2 DG~12s!

GS 32m

2 D G . ~B2!
r-

e
n

g
it

ea
APPENDIX C: COLEMAN-WEINBERG LAGRANGIANS
FOR MÅ0

1. S2ËM 2

For m51

L eff5
1

2
logS M2S

m D . ~C1!

The dependence onm can be renormalized away by requi
ing that the effective Lagrangian vanishes whenM→`. In
this case, this is equivalent to subtracting a field-independ
term, which is merely a redefinition of the cosmological co
stant. After doing so, one gets

L eff5
1

2
logS 12

S

M D . ~C2!

For m52

L eff5
S

4p F221 log
M2

m2
12

AM22S2

S

3arctanS S

AM22S2D G1
1

4
AM22S2. ~C3!

The dependence onm can again be eliminated by askin
the effective Lagrangian to vanish in the infinite mass lim
But, in this case, this amounts to renormalizing a term lin
in S.

For m53

L eff5
1

16p FM22S212MS

22~M22S2!logS M2S

m D G . ~C4!
06403
nt
-

.
r

For m54

L eff5
21

144p2 F16S3221M2S16p~M22S2!3/2

16~3M2S22S3!logS M

m D
112~M22S2!3/2arctanS S

AM22S2D G . ~C5!

For m55

L eff5
1

768p2
@29M4220M3S118M2S2

112MS329S4112~M22S2!2log~M2S!#.

~C6!

2. S2ÌM 2, SÌ0

For m51

L eff52
1

2
logS S22M2

m2 D 1arg tanhS M

S D6 ip. ~C7!

3. S2ÌM 2, SË0

For m51

L eff52
1

2
logS S22M2

m2 D 2arg tanhS M

uSu D . ~C8!
g
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